Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Amit K Naskar
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Mike Zach
- Nihal Kanbargi
- Andrew F May
- Annetta Burger
- Arit Das
- Ben Garrison
- Benjamin L Doughty
- Brad Johnson
- Brian Sanders
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Bowland
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Edgar Lara-Curzio
- Felix L Paulauskas
- Frederic Vautard
- Gautam Malviya Thakur
- Gerald Tuskan
- Holly Humphrey
- Hsin Wang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Gaboardi
- James Klett
- Jeff Foster
- Jeffrey Einkauf
- Jennifer M Pyles
- Jerry Parks
- Jesse McGaha
- John F Cahill
- John Lindahl
- Josh Michener
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liangyu Qian
- Liz McBride
- Luke Sadergaski
- Nedim Cinbiz
- Padhraic L Mulligan
- Paul Abraham
- Robert E Norris Jr
- Sandra Davern
- Santanu Roy
- Sumit Gupta
- Todd Thomas
- Tony Beard
- Uvinduni Premadasa
- Vera Bocharova
- Vilmos Kertesz
- Xiaohan Yang
- Xiuling Nie
- Yang Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.