Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Ilias Belharouak
- Ali Abouimrane
- Daniel Jacobson
- Mike Zach
- Ruhul Amin
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- David L Wood III
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Georgios Polyzos
- Hongbin Sun
- Hsin Wang
- James Gaboardi
- James Klett
- Jaswinder Sharma
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Junbin Choi
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liz McBride
- Luke Sadergaski
- Lu Yu
- Marm Dixit
- Nedim Cinbiz
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Sandra Davern
- Todd Thomas
- Tony Beard
- Xiuling Nie
- Yaocai Bai
- Zhijia Du

Mechanism-Based Trait Inference in Plants Using Multiplex Networks, AI Agents, and Translation Tools
This system enables the modular design and optimization of complex plant traits by organizing genes and regulatory mechanisms into interpretable clades.

Mechanism-Based Biological Inference via Multiplex Networks, AI Agents and Cross-Species Translation
This invention provides a platform that uses AI agents and biological networks to uncover and interpret disease-relevant biological mechanisms.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.