Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Travis Humble
- Vincent Paquit
- Vlastimil Kunc
- Ahmed Hassen
- Akash Jag Prasad
- Brian Weber
- Calen Kimmell
- Canhai Lai
- Chris Tyler
- Clay Leach
- Costas Tsouris
- Dan Coughlin
- Isaac Sikkema
- James Haley
- James Parks II
- Jaydeep Karandikar
- Jim Tobin
- Joseph Olatt
- Josh Crabtree
- Kevin Spakes
- Kim Sitzlar
- Kunal Mondal
- Lilian V Swann
- Luke Koch
- Mahim Mathur
- Mary A Adkisson
- Merlin Theodore
- Oscar Martinez
- Ryan Dehoff
- Samudra Dasgupta
- Steven Guzorek
- Subhabrata Saha
- T Oesch
- Vipin Kumar
- Vladimir Orlyanchik
- Zackary Snow

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Sensing of additive manufacturing processes promises to facilitate detailed quality inspection at scales that have seldom been seen in traditional manufacturing processes.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.