Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Hongbin Sun
- Chad Steed
- Junghoon Chae
- Mingyan Li
- Sam Hollifield
- Travis Humble
- Brian Weber
- Bruce Moyer
- Debjani Pal
- Ilias Belharouak
- Isaac Sikkema
- Jeffrey Einkauf
- Jennifer M Pyles
- Joseph Olatt
- Justin Griswold
- Kevin Spakes
- Kunal Mondal
- Kuntal De
- Laetitia H Delmau
- Lilian V Swann
- Luke Koch
- Luke Sadergaski
- Mahim Mathur
- Mary A Adkisson
- Mike Zach
- Oscar Martinez
- Padhraic L Mulligan
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Samudra Dasgupta
- Sandra Davern
- Thien D. Nguyen
- T Oesch
- Vishaldeep Sharma

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.

Knowing the state of charge of lithium-ion batteries, used to power applications from electric vehicles to medical diagnostic equipment, is critical for long-term battery operation.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.