Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Soydan Ozcan
- Halil Tekinalp
- Meghan Lamm
- Rama K Vasudevan
- Vlastimil Kunc
- Ahmed Hassen
- Sergei V Kalinin
- Umesh N MARATHE
- Yongtao Liu
- Dan Coughlin
- Katie Copenhaver
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Steven Guzorek
- Uday Vaidya
- Vipin Kumar
- Alex Roschli
- Beth L Armstrong
- David Nuttall
- Georges Chahine
- Kyle Kelley
- Matt Korey
- Nadim Hmeidat
- Pum Kim
- Sanjita Wasti
- Steve Bullock
- Tyler Smith
- Xianhui Zhao
- Adwoa Owusu
- Akash Phadatare
- Amber Hubbard
- Anton Ievlev
- Arpan Biswas
- Ben Lamm
- Brian Post
- Brittany Rodriguez
- Cait Clarkson
- Erin Webb
- Evin Carter
- Gabriel Veith
- Gerd Duscher
- Jeremy Malmstead
- Jesse Heineman
- Jim Tobin
- Josh Crabtree
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marm Dixit
- Marti Checa Nualart
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Sai Mani Prudhvi Valleti
- Sana Elyas
- Segun Isaac Talabi
- Shajjad Chowdhury
- Stephen Jesse
- Subhabrata Saha
- Sumner Harris
- Tolga Aytug
- Utkarsh Pratiush

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Fiberglass, semi-structural insulation for recycled glass fiber and using a low cost silicon with pultruded rods, either fiberglass and a low cost resin, polyester for pultruded rods. It will reduce the use of wood, which is flammable, and still be structural.

Through the use of splicing methods, joining two different fiber types in the tow stage of the process enables great benefits to the strength of the material change.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

As additive manufacturing technologies advance and 3D-printers get larger, there is a constant need for larger extruders with higher throughput to construct larger objects at reasonable time.

ORNL researchers have developed a new method for producing thermoset foam insulation with improved processing and installation outcomes.