Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Yong Chae Lim
- Rangasayee Kannan
- Sergiy Kalnaus
- Zhili Feng
- Adam Stevens
- Beth L Armstrong
- Brian Post
- Bryan Lim
- Georgios Polyzos
- Jaswinder Sharma
- Jian Chen
- Jiheon Jun
- Nancy Dudney
- Peeyush Nandwana
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Sergey Smolentsev
- Sudarsanam Babu
- Tomas Grejtak
- Wei Zhang
- William Peter
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Fusion reactors need efficient systems to create tritium fuel and handle intense heat and radiation. Traditional liquid metal systems face challenges like high pressure losses and material breakdown in strong magnetic fields.

The co-processing of cathode and composite electrolyte for solid state polymer batteries has been developed. A traditional uncalendared cathode of e.g.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.