Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Alex Plotkowski
- Amit Shyam
- James A Haynes
- Sumit Bahl
- Alexander I Wiechert
- Alice Perrin
- Andres Marquez Rossy
- Costas Tsouris
- Debangshu Mukherjee
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- Hongbin Sun
- Jovid Rakhmonov
- Md Inzamam Ul Haque
- Nate See
- Nicholas Richter
- Olga S Ovchinnikova
- Peeyush Nandwana
- Prashant Jain
- Radu Custelcean
- Ryan Dehoff
- Sunyong Kwon
- Thien D. Nguyen
- Ying Yang

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.

A high-strength, heat-resistant Al-Ce-Ni alloy optimized for additive manufacturing in industrial applications.