Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Ahmed Hassen
- Vlastimil Kunc
- Steve Bullock
- Soydan Ozcan
- Steven Guzorek
- Corson Cramer
- Vipin Kumar
- Halil Tekinalp
- Meghan Lamm
- Brian Post
- David Nuttall
- Uday Vaidya
- Umesh N MARATHE
- Ying Yang
- Beth L Armstrong
- Dan Coughlin
- Edgar Lara-Curzio
- Greg Larsen
- James Klett
- Katie Copenhaver
- Nadim Hmeidat
- Trevor Aguirre
- Tyler Smith
- Adam Willoughby
- Alex Roschli
- Alice Perrin
- Brittany Rodriguez
- Bruce A Pint
- Christopher Ledford
- Craig Blue
- Eric Wolfe
- Georges Chahine
- Jim Tobin
- John Lindahl
- Matt Korey
- Michael Kirka
- Pum Kim
- Rishi Pillai
- Sanjita Wasti
- Segun Isaac Talabi
- Steven J Zinkle
- Subhabrata Saha
- Xianhui Zhao
- Yanli Wang
- Yutai Kato
- Adam Stevens
- Adwoa Owusu
- Akash Phadatare
- Alex Plotkowski
- Amber Hubbard
- Amit Shyam
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Cait Clarkson
- Charles Hawkins
- Charlie Cook
- Christopher Hershey
- Costas Tsouris
- Daniel Rasmussen
- David J Mitchell
- Dustin Gilmer
- Erin Webb
- Evin Carter
- Frederic Vautard
- Gabriel Veith
- Gerry Knapp
- Gs Jung
- Gyoung Gug Jang
- James A Haynes
- Jeremy Malmstead
- Jesse Heineman
- Jiheon Jun
- Jong K Keum
- Jordan Wright
- Josh Crabtree
- Julian Charron
- Khryslyn G Araño
- Kim Sitzlar
- Kitty K Mccracken
- Komal Chawla
- Marie Romedenne
- Marm Dixit
- Merlin Theodore
- Mina Yoon
- Nicholas Richter
- Nidia Gallego
- Oluwafemi Oyedeji
- Paritosh Mhatre
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Radu Custelcean
- Ryan Dehoff
- Ryan Ogle
- Sana Elyas
- Shajjad Chowdhury
- Sudarsanam Babu
- Sumit Bahl
- Sunyong Kwon
- Thomas Feldhausen
- Tim Graening Seibert
- Tolga Aytug
- Tomonori Saito
- Tony Beard
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

The technology will offer supportless DIW of complex structures using vinyl ester resin, facilitated by multidirectional 6 axis printing.

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

Wind turbine blades face a harsh environment in which erosion of the leading edge is a major factor for in-use maintenance. Current industrial practices to address this leading edge erosion are replacement of reinforcing materials upon significant damage infliction.

This manufacturing method uses multifunctional materials distributed volumetrically to generate a stiffness-based architecture, where continuous surfaces can be created from flat, rapidly produced geometries.

Through utilizing a two function splice we can increase the splice strength for opposing tows.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

We proposed and developed a carbon nanofiber (CNF) suspension-based sizing agent, that resulted in improved interfacial, and mechanical properties. The CNF dispersed sizing agent can be applied in a relatively simpler way (by passing the continuous tow through it).

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.