Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Gabriel Veith
- Beth L Armstrong
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Robert Sacci
- Tomonori Saito
- Ali Riza Ekti
- Ethan Self
- Jaswinder Sharma
- Raymond Borges Hink
- Sergiy Kalnaus
- Aaron Werth
- Aaron Wilson
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Sanders
- Burak Ozpineci
- Chanho Kim
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Felipe Polo Garzon
- Gary Hahn
- Georgios Polyzos
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Ilias Belharouak
- Isaac Sikkema
- Isabelle Snyder
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- John F Cahill
- Joseph Olatt
- Josh Michener
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Kunal Mondal
- Liangyu Qian
- Logan Kearney
- Mahim Mathur
- Matthew S Chambers
- Michael Toomey
- Mingyan Li
- Mostak Mohammad
- Nancy Dudney
- Nihal Kanbargi
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Paul Abraham
- Peng Yang
- Peter L Fuhr
- Sai Krishna Reddy Adapa
- Sam Hollifield
- Vera Bocharova
- Vilmos Kertesz
- Xiang Lyu
- Xiaohan Yang
- Yang Liu
- Yarom Polsky

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.

We developed and incorporated two innovative mPET/Cu and mPET/Al foils as current collectors in LIBs to enhance cell energy density under XFC conditions.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.