Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Beth L Armstrong
- Gabriel Veith
- Guang Yang
- Michelle Lehmann
- Edgar Lara-Curzio
- Hongbin Sun
- Lawrence {Larry} M Anovitz
- Robert Sacci
- Tomonori Saito
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Eric Wolfe
- Ethan Self
- Ilias Belharouak
- Jaswinder Sharma
- Prashant Jain
- Rishi Pillai
- Sergiy Kalnaus
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Alexandra Moy
- Alexey Serov
- Alice Perrin
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Ben Lamm
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Chanho Kim
- Charles Hawkins
- Christopher Ledford
- Felipe Polo Garzon
- Frederic Vautard
- Georgios Polyzos
- Ian Greenquist
- Jiheon Jun
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Marie Romedenne
- Matthew S Chambers
- Meghan Lamm
- Michael Kirka
- Michael Toomey
- Nancy Dudney
- Nate See
- Nidia Gallego
- Nihal Kanbargi
- Nithin Panicker
- Patxi Fernandez-Zelaia
- Peng Yang
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Priyanshi Agrawal
- Ruhul Amin
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Shajjad Chowdhury
- Thien D. Nguyen
- Tim Graening Seibert
- Tolga Aytug
- Vera Bocharova
- Vishaldeep Sharma
- Vittorio Badalassi
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiang Lyu
- Yan-Ru Lin
- Yong Chae Lim
- Zhili Feng

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

The present invention is a carbon nanofiber composite for use as the cathode matrix in an alkali-metal polysulfide flow battery. The CNF composite demonstrates an improvement in sulfur utilization compared to carbon paper alone.

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.