Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Amit Shyam
- Blane Fillingim
- Brian Post
- Eddie Lopez Honorato
- Kyle Kelley
- Lauren Heinrich
- Rangasayee Kannan
- Ryan Heldt
- Sudarsanam Babu
- Thomas Feldhausen
- Tyler Gerczak
- Yousub Lee
- Alex Plotkowski
- Andres Marquez Rossy
- Anton Ievlev
- Arpan Biswas
- Bruce A Pint
- Bryan Lim
- Callie Goetz
- Christopher Fancher
- Christopher Hobbs
- Fred List III
- Gerd Duscher
- Gordon Robertson
- Jay Reynolds
- Jeff Brookins
- Keith Carver
- Liam Collins
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Matt Kurley III
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Peter Wang
- Richard Howard
- Rodney D Hunt
- Ryan Dehoff
- Sai Mani Prudhvi Valleti
- Stephen Jesse
- Steven J Zinkle
- Sumner Harris
- Thomas Butcher
- Tim Graening Seibert
- Tomas Grejtak
- Utkarsh Pratiush
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yutai Kato

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Sintering additives to improve densification and microstructure control of UN provides a facile approach to producing high quality nuclear fuels.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.