Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Rama K Vasudevan
- Sergei V Kalinin
- Yongtao Liu
- Kevin M Roccapriore
- Maxim A Ziatdinov
- Kyle Kelley
- Mike Zach
- Andrew F May
- Annetta Burger
- Anton Ievlev
- Arpan Biswas
- Ben Garrison
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Dave Willis
- Debjani Pal
- Debraj De
- Gautam Malviya Thakur
- Gerd Duscher
- Hsin Wang
- James Gaboardi
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jesse McGaha
- John Lindahl
- Justin Griswold
- Kevin Sparks
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Liz McBride
- Luke Chapman
- Luke Sadergaski
- Mahshid Ahmadi-Kalinina
- Marti Checa Nualart
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Padhraic L Mulligan
- Sai Mani Prudhvi Valleti
- Sandra Davern
- Stephen Jesse
- Sumner Harris
- Sydney Murray III
- Todd Thomas
- Tony Beard
- Utkarsh Pratiush
- Vasilis Tzoganis
- Vasiliy Morozov
- Xiuling Nie
- Yun Liu

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Dual-GP addresses limitations in traditional GPBO-driven autonomous experimentation by incorporating an additional surrogate observer and allowing human oversight, this technique improves optimization efficiency via data quality assessment and adaptability to unanticipated exp

We presented a novel apparatus and method for laser beam position detection and pointing stabilization using analog position-sensitive diodes (PSDs).

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Scanning transmission electron microscopes are useful for a variety of applications. Atomic defects in materials are critical for areas such as quantum photonics, magnetic storage, and catalysis.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

A human-in-the-loop machine learning (hML) technology potentially enhances experimental workflows by integrating human expertise with AI automation.

The scanning transmission electron microscope (STEM) provides unprecedented spatial resolution and is critical for many applications, primarily for imaging matter at the atomic and nanoscales and obtaining spectroscopic information at similar length scales.

High and ultra-high vacuum applications require seals that do not allow leaks. O-rings can break down over time, due to aging and exposure to radiation. Metallic seals can damage sealing surfaces, making replacement of the original seal very difficult.