Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities
(27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Christopher Ledford
- Peeyush Nandwana
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Bruce Moyer
- Christopher Rouleau
- Corson Cramer
- Costas Tsouris
- Debjani Pal
- Fred List III
- Gs Jung
- Gyoung Gug Jang
- Ilia N Ivanov
- Ivan Vlassiouk
- James Klett
- Jeffrey Einkauf
- Jennifer M Pyles
- Jong K Keum
- Justin Griswold
- Keith Carver
- Kuntal De
- Kyle Kelley
- Laetitia H Delmau
- Luke Sadergaski
- Mike Zach
- Mina Yoon
- Padhraic L Mulligan
- Patxi Fernandez-Zelaia
- Philip Bingham
- Radu Custelcean
- Richard Howard
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Steve Bullock
- Steven Randolph
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.