Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Stephen Jesse
- Alexandre Sorokine
- An-Ping Li
- Andrew Lupini
- Annetta Burger
- Anton Ievlev
- Bogdan Dryzhakov
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- Debraj De
- Gautam Malviya Thakur
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Gaboardi
- Jamieson Brechtl
- Jesse McGaha
- Jessica Moehl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kevin Sparks
- Liam Collins
- Liz McBride
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Philipe Ambrozio Dias
- Saban Hus
- Steven Randolph
- Taylor Hauser
- Todd Thomas
- Viswadeep Lebakula
- Xiuling Nie
- Yongtao Liu

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

This invention introduces a system for microscopy called pan-sharpening, enabling the generation of images with both full-spatial and full-spectral resolution without needing to capture the entire dataset, significantly reducing data acquisition time.