Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Rafal Wojda
- Joseph Chapman
- Kyle Kelley
- Nicholas Peters
- Prasad Kandula
- Rama K Vasudevan
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Sergei V Kalinin
- Stephen Jesse
- Vandana Rallabandi
- Alex Plotkowski
- An-Ping Li
- Andrew Lupini
- Anees Alnajjar
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Williams
- Christopher Fancher
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marcio Magri Kimpara
- Mariam Kiran
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mostak Mohammad
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Omer Onar
- Ondrej Dyck
- Praveen Kumar
- Saban Hus
- Shajjad Chowdhury
- Steven Randolph
- Subho Mukherjee
- Suman Debnath
- Yongtao Liu

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Misalignment issues of the PWPT system have been addressed. The intercell power transformer has been introduced in order to improve load sharing of the system during a mismatch of the primary single-phase coil and the secondary multi-phase coils.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.