Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Ilias Belharouak
- Kyle Kelley
- Rama K Vasudevan
- Ali Abouimrane
- Ruhul Amin
- Sergei V Kalinin
- Stephen Jesse
- Viswadeep Lebakula
- Alexandre Sorokine
- An-Ping Li
- Andrew Lupini
- Annetta Burger
- Anton Ievlev
- Bogdan Dryzhakov
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- David L Wood III
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- Georgios Polyzos
- Hongbin Sun
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Gaboardi
- Jamieson Brechtl
- Jaswinder Sharma
- Jesse McGaha
- Jessica Moehl
- Jewook Park
- Junbin Choi
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kevin Sparks
- Liam Collins
- Liz McBride
- Lu Yu
- Marm Dixit
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Saban Hus
- Steven Randolph
- Taylor Hauser
- Todd Thomas
- Xiuling Nie
- Yaocai Bai
- Yongtao Liu
- Zhijia Du

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

ORNL has developed a new hydrothermal synthesis route to generate high quality battery cathode precursors. The new route offers excellent compositional control, homogenous spherical morphologies, and an ammonia-free co-precipitation process.

Sodium-ion batteries are a promising candidate to replace lithium-ion batteries for large-scale energy storage system because of their cost and safety benefits.