Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities
(28)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Sergei V Kalinin
- Stephen Jesse
- Alexander Enders
- Alexander I Wiechert
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Benjamin Manard
- Ben Lamm
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce A Pint
- Charles F Weber
- Christopher S Blessinger
- Costas Tsouris
- Govindarajan Muralidharan
- Hoyeon Jeon
- Huixin (anna) Jiang
- Isaac Sikkema
- Jamieson Brechtl
- Jewook Park
- Joanna Mcfarlane
- Jonathan Willocks
- Joseph Olatt
- Junghyun Bae
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marti Checa Nualart
- Matt Vick
- Maxim A Ziatdinov
- Meghan Lamm
- Mingyan Li
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Oscar Martinez
- Rose Montgomery
- Saban Hus
- Sam Hollifield
- Shajjad Chowdhury
- Steven J Zinkle
- Steven Randolph
- Thomas R Muth
- Tim Graening Seibert
- Tolga Aytug
- Vandana Rallabandi
- Venugopal K Varma
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yongtao Liu
- Yutai Kato

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This technology provides a device, platform and method of fabrication of new atomically tailored materials. This “synthescope” is a scanning transmission electron microscope (STEM) transformed into an atomic-scale material manipulation platform.