Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Peeyush Nandwana
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Brian Post
- Kyle Kelley
- Rama K Vasudevan
- Sudarsanam Babu
- Adam Stevens
- Amit Shyam
- Blane Fillingim
- Christopher Ledford
- Lauren Heinrich
- Sergei V Kalinin
- Stephen Jesse
- Thomas Feldhausen
- Ying Yang
- Yousub Lee
- Alex Plotkowski
- Alice Perrin
- Amir K Ziabari
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Corson Cramer
- Fred List III
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- James Klett
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- Kai Li
- Kashif Nawaz
- Keith Carver
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Ondrej Dyck
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Richard Howard
- Roger G Miller
- Saban Hus
- Sarah Graham
- Steve Bullock
- Steven J Zinkle
- Steven Randolph
- Thomas Butcher
- Tim Graening Seibert
- Tomas Grejtak
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- Weicheng Zhong
- Wei Tang
- William Peter
- Xiang Chen
- Yan-Ru Lin
- Yanli Wang
- Yiyu Wang
- Yongtao Liu
- Yukinori Yamamoto
- Yutai Kato

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.