Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Corson Cramer
- Steve Bullock
- Amit Shyam
- Alex Plotkowski
- Greg Larsen
- James Klett
- Kyle Kelley
- Rama K Vasudevan
- Trevor Aguirre
- James A Haynes
- Ryan Dehoff
- Sergei V Kalinin
- Stephen Jesse
- Sumit Bahl
- Vlastimil Kunc
- Adam Stevens
- Ahmed Hassen
- Alice Perrin
- An-Ping Li
- Andres Marquez Rossy
- Andrew Lupini
- Anton Ievlev
- Beth L Armstrong
- Bogdan Dryzhakov
- Brian Post
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Christopher Ledford
- Craig Blue
- Daniel Rasmussen
- David J Mitchell
- Dean T Pierce
- Dustin Gilmer
- Gerry Knapp
- Gordon Robertson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jay Reynolds
- Jeff Brookins
- Jewook Park
- John Lindahl
- Jordan Wright
- Jovid Rakhmonov
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Nadim Hmeidat
- Neus Domingo Marimon
- Nicholas Richter
- Olga S Ovchinnikova
- Ondrej Dyck
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Saban Hus
- Sana Elyas
- Sarah Graham
- Steven Guzorek
- Steven Randolph
- Sudarsanam Babu
- Sunyong Kwon
- Tomonori Saito
- Tony Beard
- William Peter
- Ying Yang
- Yongtao Liu
- Yukinori Yamamoto

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The technologies provide additively manufactured thermal protection system.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

This invention focuses on improving the ceramic yield of preceramic polymers by tuning the crosslinking process that occurs during vat photopolymerization (VP).

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Using all polymer formulations, the PIP densification is improved almost 70% over traditional preceramic polymers and PIP material leading to cost and times saving for densifying ceramic composites made from powder or fibers.