Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Isabelle Snyder
- Amit K Naskar
- Kyle Kelley
- Rama K Vasudevan
- Adam Siekmann
- Emilio Piesciorovsky
- Jaswinder Sharma
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Sergei V Kalinin
- Stephen Jesse
- Subho Mukherjee
- Vivek Sujan
- Aaron Werth
- Aaron Wilson
- Ali Riza Ekti
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Arit Das
- Benjamin L Doughty
- Bogdan Dryzhakov
- Christopher Bowland
- Edgar Lara-Curzio
- Elizabeth Piersall
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gary Hahn
- Holly Humphrey
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Ondrej Dyck
- Ozgur Alaca
- Raymond Borges Hink
- Robert E Norris Jr
- Saban Hus
- Santanu Roy
- Steven Randolph
- Sumit Gupta
- Uvinduni Premadasa
- Vera Bocharova
- Viswadeep Lebakula
- Yarom Polsky
- Yongtao Liu

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.