Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Isabelle Snyder
- Kyle Kelley
- Rama K Vasudevan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Siekmann
- Amir K Ziabari
- Diana E Hun
- Emilio Piesciorovsky
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Sergei V Kalinin
- Stephen Jesse
- Stephen M Killough
- Subho Mukherjee
- Vincent Paquit
- Vivek Sujan
- Aaron Werth
- Aaron Wilson
- Ali Riza Ekti
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Bryan Maldonado Puente
- Corey Cooke
- Elizabeth Piersall
- Eve Tsybina
- Gary Hahn
- Gina Accawi
- Gurneesh Jatana
- Hoyeon Jeon
- Huixin (anna) Jiang
- Jamieson Brechtl
- Jewook Park
- John Holliman II
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Liam Collins
- Mark M Root
- Marti Checa Nualart
- Maxim A Ziatdinov
- Michael Kirka
- Neus Domingo Marimon
- Nils Stenvig
- Nolan Hayes
- Obaid Rahman
- Olga S Ovchinnikova
- Ondrej Dyck
- Ozgur Alaca
- Peter Wang
- Raymond Borges Hink
- Ryan Kerekes
- Saban Hus
- Sally Ghanem
- Steven Randolph
- Viswadeep Lebakula
- Yarom Polsky
- Yongtao Liu

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

How fast is a vehicle traveling? For different reasons, this basic question is of interest to other motorists, insurance companies, law enforcement, traffic planners, and security personnel. Solutions to this measurement problem suffer from a number of constraints.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.

This disclosure introduces an innovative tool that capitalizes on historical data concerning the carbon intensity of the grid, distinct to each electric zone.