Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
- (-) Isotope Science and Enrichment Directorate (7)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Mike Zach
- Sergei V Kalinin
- Soydan Ozcan
- Stephen Jesse
- Xianhui Zhao
- Alex Roschli
- An-Ping Li
- Andrew F May
- Andrew Lupini
- Annetta Burger
- Anton Ievlev
- Ben Garrison
- Bogdan Dryzhakov
- Brad Johnson
- Bruce Moyer
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debjani Pal
- Debraj De
- Erin Webb
- Evin Carter
- Gautam Malviya Thakur
- Halil Tekinalp
- Hoyeon Jeon
- Hsin Wang
- Huixin (anna) Jiang
- James Gaboardi
- James Klett
- Jamieson Brechtl
- Jeffrey Einkauf
- Jennifer M Pyles
- Jeremy Malmstead
- Jesse McGaha
- Jewook Park
- John Lindahl
- Justin Griswold
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kevin Sparks
- Kitty K Mccracken
- Kuntal De
- Laetitia H Delmau
- Liam Collins
- Liz McBride
- Luke Sadergaski
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mengdawn Cheng
- Nedim Cinbiz
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Oluwafemi Oyedeji
- Ondrej Dyck
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Saban Hus
- Sandra Davern
- Sanjita Wasti
- Steven Randolph
- Todd Thomas
- Tony Beard
- Tyler Smith
- Xiuling Nie
- Yongtao Liu

We have developed a novel extrusion-based 3D printing technique that can achieve a resolution of 0.51 mm layer thickness, and catalyst loading of 44% and 90.5% before and after drying, respectively.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

Moisture management accounts for over 40% of the energy used by buildings. As such development of energy efficient and resilient dehumidification technologies are critical to decarbonize the building energy sector.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.