Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate
(220)
- Fusion and Fission Energy and Science Directorate
(22)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (129)
- User Facilities (27)
Researcher
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- Diana E Hun
- Philip Bingham
- Philip Boudreaux
- Ryan Dehoff
- Stephen M Killough
- Vincent Paquit
- Bryan Maldonado Puente
- Corey Cooke
- Gina Accawi
- Gurneesh Jatana
- Mark M Root
- Michael Kirka
- Nate See
- Nolan Hayes
- Obaid Rahman
- Peter Wang
- Prashant Jain
- Ryan Kerekes
- Sally Ghanem

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

This invention utilizes new techniques in machine learning to accelerate the training of ML-based communication receivers.

Current technology for heating, ventilation, and air conditioning (HVAC) and other uses such as vending machines rely on refrigerants that have high global warming potential (GWP).

A diver-operated system brings safe and portable imaging to a new operating environment – underwater at depths up to 300 feet.

Technologies for optimizing prefab retrofit panel installation using a real-time evaluator is described.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.