Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Michael Kirka
- Rangasayee Kannan
- Ryan Dehoff
- Adam Stevens
- Andrzej Nycz
- Chris Masuo
- Christopher Ledford
- Luke Meyer
- Peeyush Nandwana
- William Carter
- Alexander Enders
- Alex Walters
- Alice Perrin
- Amir K Ziabari
- Beth L Armstrong
- Brian Post
- Christopher S Blessinger
- Corson Cramer
- Fred List III
- James Klett
- Joshua Vaughan
- Junghyun Bae
- Keith Carver
- Louise G Evans
- Patxi Fernandez-Zelaia
- Peter Wang
- Philip Bingham
- Richard Howard
- Richard L. Reed
- Roger G Miller
- Sarah Graham
- Steve Bullock
- Sudarsanam Babu
- Thomas Butcher
- Trevor Aguirre
- Venkatakrishnan Singanallur Vaidyanathan
- Vincent Paquit
- William Peter
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto

A pressure burst feature has been designed and demonstrated for relieving potentially hazardous excess pressure within irradiation capsules used in the ORNL High Flux Isotope Reactor (HFIR).

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur
Red mud residue is an industrial waste product generated during the processing of bauxite ore to extract alumina for the steelmaking industry. Red mud is rich in minerals in bauxite like iron and aluminum oxide, but also heavy metals, including arsenic and mercury.

High strength, oxidation resistant refractory alloys are difficult to fabricate for commercial use in extreme environments.

This technology aims to provide and integrated and oxidation resistant cladding or coating onto carbon-based composites in seconds.