Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate
(21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate
(17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (128)
- User Facilities (27)
Researcher
- Alexander I Wiechert
- Blane Fillingim
- Brian Post
- Costas Tsouris
- Lauren Heinrich
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Yousub Lee
- Aaron Werth
- Ali Passian
- Benjamin Manard
- Charles F Weber
- Debangshu Mukherjee
- Emilio Piesciorovsky
- Gary Hahn
- Govindarajan Muralidharan
- Gs Jung
- Gyoung Gug Jang
- Harper Jordan
- Isaac Sikkema
- Jason Jarnagin
- Joanna Mcfarlane
- Joel Asiamah
- Joel Dawson
- Jonathan Willocks
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Mark Provo II
- Matt Vick
- Md Inzamam Ul Haque
- Mingyan Li
- Nance Ericson
- Olga S Ovchinnikova
- Oscar Martinez
- Radu Custelcean
- Ramanan Sankaran
- Raymond Borges Hink
- Rob Root
- Rose Montgomery
- Sam Hollifield
- Srikanth Yoginath
- Thomas R Muth
- Vandana Rallabandi
- Varisara Tansakul
- Venugopal K Varma
- Vimal Ramanuj
- Wenjun Ge
- Yarom Polsky

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.