Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Gurneesh Jatana
- Hongbin Sun
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- James Szybist
- Jonathan Willocks
- Joseph Lukens
- Muneer Alshowkan
- Prashant Jain
- Todd Toops
- Yeonshil Park
- Alexander I Wiechert
- Alexey Serov
- Anees Alnajjar
- Benjamin Manard
- Brian Williams
- Charles F Weber
- Costas Tsouris
- Derek Splitter
- Dhruba Deka
- Diana E Hun
- Gina Accawi
- Haiying Chen
- Ian Greenquist
- Ilias Belharouak
- Joanna Mcfarlane
- Mariam Kiran
- Mark M Root
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Nate See
- Nithin Panicker
- Philip Boudreaux
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Sreshtha Sinha Majumdar
- Thien D. Nguyen
- Vandana Rallabandi
- Venkatakrishnan Singanallur Vaidyanathan
- Vishaldeep Sharma
- Vittorio Badalassi
- William P Partridge Jr
- Xiang Lyu

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Method to operate a compression ignition engine in dual fuel operation with premixed turbulent flame propagation from low to high loads.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

The invention discloses methods of using a reducing agent for catalytic oxygen reduction from CO2 streams, enabling the treated CO2 streams to meet the pipeline specifications.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.