Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Alexandre Sorokine
- Bogdan Dryzhakov
- Brian Sanders
- Christopher Rouleau
- Clinton Stipek
- Costas Tsouris
- Daniel Adams
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Isaiah Dishner
- Ivan Vlassiouk
- Jeff Foster
- Jerry Parks
- Jessica Moehl
- John F Cahill
- Jong K Keum
- Josh Michener
- Kyle Kelley
- Liangyu Qian
- Mina Yoon
- Paul Abraham
- Philipe Ambrozio Dias
- Radu Custelcean
- Steven Randolph
- Taylor Hauser
- Vilmos Kertesz
- Viswadeep Lebakula
- Xiaohan Yang
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.