Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Ilias Belharouak
- Alex Plotkowski
- Amit Shyam
- Alexey Serov
- Ali Abouimrane
- James A Haynes
- Jaswinder Sharma
- Marm Dixit
- Ruhul Amin
- Sumit Bahl
- Viswadeep Lebakula
- Xiang Lyu
- Alexandre Sorokine
- Alice Perrin
- Amit K Naskar
- Andres Marquez Rossy
- Annetta Burger
- Ben LaRiviere
- Beth L Armstrong
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- David L Wood III
- Debraj De
- Eve Tsybina
- Gabriel Veith
- Gautam Malviya Thakur
- Georgios Polyzos
- Gerry Knapp
- Holly Humphrey
- Hongbin Sun
- James Gaboardi
- James Szybist
- Jesse McGaha
- Jessica Moehl
- Jonathan Willocks
- Jovid Rakhmonov
- Junbin Choi
- Kevin Sparks
- Khryslyn G Araño
- Liz McBride
- Logan Kearney
- Lu Yu
- Meghan Lamm
- Michael Toomey
- Michelle Lehmann
- Nance Ericson
- Nicholas Richter
- Nihal Kanbargi
- Paul Groth
- Peeyush Nandwana
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Ritu Sahore
- Ryan Dehoff
- Sunyong Kwon
- Taylor Hauser
- Todd Thomas
- Todd Toops
- Xiuling Nie
- Yaocai Bai
- Ying Yang
- Zhijia Du

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

An electrochemical cell has been specifically designed to maximize CO2 release from the seawater while also not changing the pH of the seawater before returning to the sea.

The ORNL invention addresses the challenge of poor mechanical properties of dry processed electrodes, improves their electrical properties, while improving their electrochemical performance.

Hydrogen is in great demand, but production relies heavily on hydrocarbons utilization. This process contributes greenhouse gases release into the atmosphere.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

ORNL has developed a new hybrid membrane to improve electrochemical stability in next-generation sodium metal anodes.