Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Andrzej Nycz
- Chris Tyler
- Chris Masuo
- Justin West
- Ryan Dehoff
- Vincent Paquit
- Brian Post
- Peter Wang
- Ritin Mathews
- Alex Walters
- Michael Kirka
- Rangasayee Kannan
- Venkatakrishnan Singanallur Vaidyanathan
- Adam Stevens
- Alex Roschli
- Amir K Ziabari
- Brian Gibson
- Clay Leach
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Joshua Vaughan
- Luke Meyer
- Peeyush Nandwana
- Philip Bingham
- Scott Smith
- Udaya C Kalluri
- William Carter
- Akash Jag Prasad
- Alice Perrin
- Amit Shyam
- Calen Kimmell
- Cameron Adkins
- Canhai Lai
- Chelo Chavez
- Christopher Fancher
- Christopher Ledford
- Costas Tsouris
- Diana E Hun
- Emma Betters
- Erin Webb
- Evin Carter
- Gina Accawi
- Gordon Robertson
- Greg Corson
- Gurneesh Jatana
- Isha Bhandari
- James Haley
- James Parks II
- Jay Reynolds
- Jeff Brookins
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Josh B Harbin
- Kitty K Mccracken
- Liam White
- Mark M Root
- Michael Borish
- Obaid Rahman
- Oluwafemi Oyedeji
- Patxi Fernandez-Zelaia
- Philip Boudreaux
- Riley Wallace
- Roger G Miller
- Sarah Graham
- Soydan Ozcan
- Sudarsanam Babu
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Xiaohan Yang
- Yan-Ru Lin
- Ying Yang
- Yukinori Yamamoto
- Zackary Snow

Gas metal arc welding (GMAW) wire arc additive manufacturing (WAAM) processes use inert shielding to protect the weld arc during material deposition, but do not protect the trailing bead, which can lead to weld issues varying from low finish quality to diminished material prop

Technologies are described directed to reducing weld additive part distortion with spot compressions integrated into the build process. The disclosed technologies can be used to make weld additive parts with potentially better geometrical accuracy.

Complex protective casings and housings are necessary for many applications, including combustion chambers of gas turbines used in aerospace engines. Manufacturing these components from forging and/or casting as a whole is challenging, costly, and time-consuming.

Compliance in a part, work holding, or base plate is beneficial for certain processes, but detrimental for machining and material removal.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of theses stresses are deformations in the build plate and final component.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.