Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Ying Yang
- Alice Perrin
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Scott Smith
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Akash Jag Prasad
- Alex Plotkowski
- Amit Shyam
- Brian Gibson
- Brian Post
- Brian Sanders
- Bruce A Pint
- Calen Kimmell
- Christopher Ledford
- Costas Tsouris
- David S Parker
- Emma Betters
- Gerald Tuskan
- Gerry Knapp
- Greg Corson
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James A Haynes
- Jeff Foster
- Jerry Parks
- Jesse Heineman
- John F Cahill
- John Potter
- Jong K Keum
- Josh B Harbin
- Josh Michener
- Liangyu Qian
- Michael Kirka
- Mina Yoon
- Nicholas Richter
- Patxi Fernandez-Zelaia
- Paul Abraham
- Radu Custelcean
- Ryan Dehoff
- Sumit Bahl
- Sunyong Kwon
- Tim Graening Seibert
- Tony L Schmitz
- Vilmos Kertesz
- Vladimir Orlyanchik
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Xiaohan Yang
- Yan-Ru Lin
- Yang Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Materials produced via additive manufacturing, or 3D printing, can experience significant residual stress, distortion and cracking, negatively impacting the manufacturing process.