Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Chris Tyler
- Justin West
- Ritin Mathews
- Kyle Kelley
- Rama K Vasudevan
- Ali Riza Ekti
- David Olvera Trejo
- J.R. R Matheson
- Jaydeep Karandikar
- Raymond Borges Hink
- Scott Smith
- Sergei V Kalinin
- Stephen Jesse
- Aaron Werth
- Aaron Wilson
- Akash Jag Prasad
- An-Ping Li
- Andrew Lupini
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Gibson
- Brian Post
- Burak Ozpineci
- Calen Kimmell
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emma Betters
- Emrullah Aydin
- Gary Hahn
- Greg Corson
- Hoyeon Jeon
- Huixin (anna) Jiang
- Isaac Sikkema
- Isabelle Snyder
- Jamieson Brechtl
- Jesse Heineman
- Jewook Park
- John Potter
- Joseph Olatt
- Josh B Harbin
- Kai Li
- Kashif Nawaz
- Kevin M Roccapriore
- Kunal Mondal
- Liam Collins
- Mahim Mathur
- Marti Checa Nualart
- Maxim A Ziatdinov
- Mingyan Li
- Mostak Mohammad
- Neus Domingo Marimon
- Nils Stenvig
- Olga S Ovchinnikova
- Omer Onar
- Ondrej Dyck
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Saban Hus
- Sam Hollifield
- Steven Randolph
- Tony L Schmitz
- Vladimir Orlyanchik
- Yarom Polsky
- Yongtao Liu

This technology can help to increase number of application areas of Wireless Power Transfer systems. It can be applied to consumer electronics, defense industry, automotive industry etc.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.