Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Joseph Chapman
- Nicholas Peters
- Hsuan-Hao Lu
- Joseph Lukens
- Muneer Alshowkan
- Anees Alnajjar
- Brian Sanders
- Brian Williams
- Diana E Hun
- Easwaran Krishnan
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- James Manley
- Jamieson Brechtl
- Jeff Foster
- Jerry Parks
- Joe Rendall
- John F Cahill
- Josh Michener
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Liangyu Qian
- Mariam Kiran
- Mengjia Tang
- Muneeshwaran Murugan
- Paul Abraham
- Tomonori Saito
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Zoriana Demchuk

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.