Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chad Steed
- Junghoon Chae
- Travis Humble
- Andrew F May
- Annetta Burger
- Ben Garrison
- Brad Johnson
- Carter Christopher
- Chance C Brown
- Charlie Cook
- Christopher Hershey
- Craig Blue
- Daniel Rasmussen
- Debraj De
- Diana E Hun
- Easwaran Krishnan
- Gautam Malviya Thakur
- Hsin Wang
- James Gaboardi
- James Klett
- James Manley
- Jamieson Brechtl
- Jesse McGaha
- Joe Rendall
- John Lindahl
- Karen Cortes Guzman
- Kashif Nawaz
- Kevin Sparks
- Kuma Sumathipala
- Liz McBride
- Mengjia Tang
- Mike Zach
- Muneeshwaran Murugan
- Nedim Cinbiz
- Samudra Dasgupta
- Todd Thomas
- Tomonori Saito
- Tony Beard
- Xiuling Nie
- Zoriana Demchuk

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

ORNL will develop an advanced high-performing RTG using a novel radioisotope heat source.