Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities
(28)
Researcher
- Alexander I Wiechert
- An-Ping Li
- Costas Tsouris
- Debangshu Mukherjee
- Diana E Hun
- Easwaran Krishnan
- Gs Jung
- Gyoung Gug Jang
- Hoyeon Jeon
- James Manley
- Jamieson Brechtl
- Jewook Park
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Md Inzamam Ul Haque
- Mengjia Tang
- Muneeshwaran Murugan
- Olga S Ovchinnikova
- Radu Custelcean
- Saban Hus
- Tomonori Saito
- Zoriana Demchuk

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Distortion in scanning tunneling microscope (STM) images is an unavoidable problem. This technology is an algorithm to identify and correct distorted wavefronts in atomic resolution STM images.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

This innovative approach combines optical and spectral imaging data via machine learning to accurately predict cancer labels directly from tissue images.