Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- Isotope Science and Enrichment Directorate (6)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
Researcher
- Isabelle Snyder
- Ying Yang
- Adam Willoughby
- Bruce A Pint
- Edgar Lara-Curzio
- Emilio Piesciorovsky
- Rishi Pillai
- Steven J Zinkle
- Yanli Wang
- Yutai Kato
- Aaron Werth
- Aaron Wilson
- Adam Siekmann
- Alice Perrin
- Ali Riza Ekti
- Ben Lamm
- Beth L Armstrong
- Bishnu Prasad Thapaliya
- Brandon Johnston
- Charles Hawkins
- Christopher Ledford
- Diana E Hun
- Easwaran Krishnan
- Elizabeth Piersall
- Eric Wolfe
- Eve Tsybina
- Frederic Vautard
- Gary Hahn
- James Manley
- Jamieson Brechtl
- Jiheon Jun
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kuma Sumathipala
- Marie Romedenne
- Meghan Lamm
- Mengjia Tang
- Michael Kirka
- Muneeshwaran Murugan
- Nidia Gallego
- Nils Stenvig
- Ozgur Alaca
- Patxi Fernandez-Zelaia
- Priyanshi Agrawal
- Raymond Borges Hink
- Ryan Dehoff
- Shajjad Chowdhury
- Subho Mukherjee
- Tim Graening Seibert
- Tolga Aytug
- Tomonori Saito
- Viswadeep Lebakula
- Vivek Sujan
- Weicheng Zhong
- Wei Tang
- Xiang Chen
- Yan-Ru Lin
- Yarom Polsky
- Yong Chae Lim
- Zhili Feng
- Zoriana Demchuk

V-Cr-Ti alloys have been proposed as candidate structural materials in fusion reactor blanket concepts with operation temperatures greater than that for reduced activation ferritic martensitic steels (RAFMs).

A novel method that prevents detachment of an optical fiber from a metal/alloy tube and allows strain measurement up to higher temperatures, about 800 C has been developed. Standard commercial adhesives typically only survive up to about 400 C.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

Faults in the power grid cause many problems that can result in catastrophic failures. Real-time fault detection in the power grid system is crucial to sustain the power systems' reliability, stability, and quality.

With the ever-growing reliance on batteries, the need for the chemicals and materials to produce these batteries is also growing accordingly. One area of critical concern is the need for high quality graphite to ensure adequate energy storage capacity and battery stability.

Test facilities to evaluate materials compatibility in hydrogen are abundant for high pressure and low temperature (<100C).

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).