Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities
(27)
Researcher
- Yong Chae Lim
- Rangasayee Kannan
- Zhili Feng
- Adam Stevens
- Brian Post
- Bryan Lim
- Christopher Rouleau
- Costas Tsouris
- Gerald Tuskan
- Gs Jung
- Gyoung Gug Jang
- Ilenne Del Valle Kessra
- Ilia N Ivanov
- Ivan Vlassiouk
- Jian Chen
- Jiheon Jun
- Jong K Keum
- Mina Yoon
- Paul Abraham
- Peeyush Nandwana
- Priyanshi Agrawal
- Radu Custelcean
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Sudarsanam Babu
- Tomas Grejtak
- Wei Zhang
- William Peter
- Xiaohan Yang
- Yang Liu
- Yiyu Wang
- Yukinori Yamamoto

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

This technology is a laser-based heating unit that offers rapid heating profiles on a research scale with minimal incidental heating of materials processing environments.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.