Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(138)
- User Facilities (28)
Researcher
- Tomonori Saito
- Vivek Sujan
- Sheng Dai
- Radu Custelcean
- Anisur Rahman
- Jeff Foster
- Parans Paranthaman
- Zhenzhen Yang
- Bishnu Prasad Thapaliya
- Costas Tsouris
- Diana E Hun
- Adam Siekmann
- Amit K Naskar
- Bruce Moyer
- Craig A Bridges
- Edgar Lara-Curzio
- Gyoung Gug Jang
- Ilja Popovs
- Jeffrey Einkauf
- Mary Danielson
- Omer Onar
- Shannon M Mahurin
- Subho Mukherjee
- Syed Islam
- Zoriana Demchuk
- Alexei P Sokolov
- Benjamin L Doughty
- Catalin Gainaru
- Erdem Asa
- Frederic Vautard
- Gs Jung
- Isabelle Snyder
- Isaiah Dishner
- Jaswinder Sharma
- Josh Michener
- Li-Qi Qiu
- Liangyu Qian
- Logan Kearney
- Michael Toomey
- Michelle Lehmann
- Natasha Ghezawi
- Nihal Kanbargi
- Nikki Thiele
- Ramesh Bhave
- Santa Jansone-Popova
- Saurabh Prakash Pethe
- Shajjad Chowdhury
- Shiwanka Vidarshi Wanasinghe Wanasinghe Mudiyanselage
- Som Shrestha
- Tolga Aytug
- Uday Vaidya
- Vera Bocharova
- Achutha Tamraparni
- Ahmed Hassen
- Alexander I Wiechert
- Andre O Desjarlais
- Anees Alnajjar
- Arit Das
- Ben Lamm
- Beth L Armstrong
- Christopher Bowland
- Corson Cramer
- Eric Wolfe
- Felix L Paulauskas
- Holly Humphrey
- Hyeonsup Lim
- Jayanthi Kumar
- Jennifer M Pyles
- John F Cahill
- Jong K Keum
- Karen Cortes Guzman
- Kaustubh Mungale
- Kuma Sumathipala
- Laetitia H Delmau
- Luke Sadergaski
- Md Faizul Islam
- Meghan Lamm
- Mengjia Tang
- Mina Yoon
- Nageswara Rao
- Nick Galan
- Nick Gregorich
- Nidia Gallego
- Phillip Halstenberg
- Robert E Norris Jr
- Robert Sacci
- Santanu Roy
- Shailesh Dangwal
- Subhamay Pramanik
- Sumit Gupta
- Tao Hong
- Uvinduni Premadasa
- Vlastimil Kunc
- Yingzhong Ma

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

Electrochemistry synthesis and characterization testing typically occurs manually at a research facility.

Atmospheric carbon dioxide is captured with an aqueous solution containing a guanidine photobase and a small peptide, using a UV-light stimulus, and subsequently released when the light stimulus is removed.

A bonded carbon fiber monolith was made using a coal-based pitch precursor without a binder.

This invention presents an integrated strategy to reduce end-user electricity costs and grid carbon emissions by efficiently utilizing Distributed Energy Resources (DER) and grid-scale electrical energy storage systems, such as batteries.

To develop efficient and stable liquid sorbents towards carbon capture, a series of functionalized ionic liquids were synthesized and studied in CO2 chemisorption via O–C bond formation.

New demands in electric vehicles have resulted in design changes for the power electronic components such as the capacitor to incur lower volume, higher operating temperatures, and dielectric properties (high dielectric permittivity and high electrical breakdown strengths).

No readily available public data exists for vehicle class and weight information that covers the entire U.S. highway network. The Travel Monitoring Analysis System, managed by the Federal Highway Administration covers only less than 1% of the US highway network.

Method for separating bulky solids from powders in an automated fashion. Powders are particularly challenging to work with in an automated workflow employing robots for chemical manipulation.

Standard stages for X-ray diffraction are designed to carry holders that are relatively large. This imposes a significant space constraint that can reduce the number of samples analyzed.