Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Vivek Sujan
- Gabriel Veith
- Adam Siekmann
- Beth L Armstrong
- Guang Yang
- Lawrence {Larry} M Anovitz
- Michelle Lehmann
- Omer Onar
- Robert Sacci
- Subho Mukherjee
- Tomonori Saito
- Yong Chae Lim
- Erdem Asa
- Ethan Self
- Isabelle Snyder
- Jaswinder Sharma
- Rangasayee Kannan
- Sergiy Kalnaus
- Zhili Feng
- Adam Stevens
- Alexandra Moy
- Alexey Serov
- Amanda Musgrove
- Amit K Naskar
- Andrew G Stack
- Anisur Rahman
- Anna M Mills
- Benjamin L Doughty
- Brian Post
- Bryan Lim
- Chanho Kim
- Felipe Polo Garzon
- Georgios Polyzos
- Hyeonsup Lim
- Ilias Belharouak
- Jian Chen
- Jiheon Jun
- Juliane Weber
- Jun Yang
- Junyan Zhang
- Khryslyn G Araño
- Logan Kearney
- Matthew S Chambers
- Michael Toomey
- Nancy Dudney
- Nihal Kanbargi
- Peeyush Nandwana
- Peng Yang
- Priyanshi Agrawal
- Roger G Miller
- Ryan Dehoff
- Sai Krishna Reddy Adapa
- Sarah Graham
- Shajjad Chowdhury
- Sudarsanam Babu
- Tomas Grejtak
- Vera Bocharova
- Wei Zhang
- William Peter
- Xiang Lyu
- Yiyu Wang
- Yukinori Yamamoto

Process to coat air and or moisture sensitive solid electrolytes for all solid state batteries.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

This invention utilizes a custom-synthesized vinyl trifluoromethanesulfonimide (VTFSI) salt and an alcohol containing small molecule or polymer for the synthesis of novel single-ion conducting polymer electrolytes for the use in Li-ion and beyond Li-ion batteries, fuel cells,

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

CO2 capture by mineral looping, either using calcium or magnesium precursors requires that the materials be calcined after CO2 is captured from the atmosphere. This separates the CO2 for later sequestration and returned the starting material to its original state.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

This is a novel approach to enhance the performance and durability of all-solid-state batteries (ASSBs) by focusing on two primary components: the Si anode and the thin electrolyte integration.

Fabrication methods are needed that are easily scalable, will enable facile manufacturing of SSEs that are < 50 µm thick to attain high energy density, and also exhibit good stability at the interface of the anode. Specifically, Wu et al.