Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate
(24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Vivek Sujan
- Adam Siekmann
- Hongbin Sun
- Omer Onar
- Subho Mukherjee
- Erdem Asa
- Isabelle Snyder
- Prashant Jain
- Viswadeep Lebakula
- Alexandre Sorokine
- Annetta Burger
- Carter Christopher
- Chance C Brown
- Clinton Stipek
- Daniel Adams
- Debraj De
- Eve Tsybina
- Gautam Malviya Thakur
- Hyeonsup Lim
- Ian Greenquist
- Ilias Belharouak
- James Gaboardi
- Jesse McGaha
- Jessica Moehl
- Kevin Sparks
- Liz McBride
- Nate See
- Nithin Panicker
- Philipe Ambrozio Dias
- Pradeep Ramuhalli
- Praveen Cheekatamarla
- Ruhul Amin
- Shajjad Chowdhury
- Taylor Hauser
- Thien D. Nguyen
- Todd Thomas
- Vishaldeep Sharma
- Vittorio Badalassi
- Xiuling Nie

In nuclear and industrial facilities, fine particles, including radioactive residues—can accumulate on the interior surfaces of ventilation ducts and equipment, posing serious safety and operational risks.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

The invention presented here addresses key challenges associated with counterfeit refrigerants by ensuring safety, maintaining system performance, supporting environmental compliance, and mitigating health and legal risks.

A novel approach is presented herein to improve time to onset of natural convection stemming from fuel element porosity during a failure mode of a nuclear reactor.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.