Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Adam Siekmann
- Joseph Chapman
- Nicholas Peters
- Omer Onar
- Subho Mukherjee
- David Olvera Trejo
- Erdem Asa
- Hsuan-Hao Lu
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Joseph Lukens
- Muneer Alshowkan
- Scott Smith
- Akash Jag Prasad
- Anees Alnajjar
- Brian Gibson
- Brian Post
- Brian Williams
- Calen Kimmell
- Emma Betters
- Greg Corson
- Hyeonsup Lim
- Jesse Heineman
- John Potter
- Josh B Harbin
- Mariam Kiran
- Shajjad Chowdhury
- Tony L Schmitz
- Vladimir Orlyanchik

Here we present a solution for practically demonstrating path-aware routing and visualizing a self-driving network.

Technologies directed to polarization agnostic continuous variable quantum key distribution are described.
Contact:
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The development of quantum networking requires architectures capable of dynamically reconfigurable entanglement distribution to meet diverse user needs and ensure tolerance against transmission disruptions.

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Polarization drift in quantum networks is a major issue. Fiber transforms a transmitted signal’s polarization differently depending on its environment.

This invention addresses a key challenge in quantum communication networks by developing a controlled-NOT (CNOT) gate that operates between two degrees of freedom (DoFs) within a single photon: polarization and frequency.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.