Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate (229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Vivek Sujan
- Chris Tyler
- Justin West
- Ritin Mathews
- Adam Siekmann
- Brian Post
- Omer Onar
- Subho Mukherjee
- William Carter
- Alex Roschli
- Andrzej Nycz
- Chris Masuo
- David Olvera Trejo
- Erdem Asa
- Isabelle Snyder
- J.R. R Matheson
- Jaydeep Karandikar
- Luke Meyer
- Scott Smith
- Adam Stevens
- Akash Jag Prasad
- Alex Walters
- Amy Elliott
- Brian Gibson
- Calen Kimmell
- Cameron Adkins
- Emma Betters
- Erin Webb
- Evin Carter
- Greg Corson
- Hyeonsup Lim
- Isha Bhandari
- Jeremy Malmstead
- Jesse Heineman
- John Potter
- Josh B Harbin
- Joshua Vaughan
- Kitty K Mccracken
- Liam White
- Michael Borish
- Oluwafemi Oyedeji
- Peter Wang
- Rangasayee Kannan
- Roger G Miller
- Ryan Dehoff
- Sarah Graham
- Shajjad Chowdhury
- Soydan Ozcan
- Sudarsanam Babu
- Tony L Schmitz
- Tyler Smith
- Vladimir Orlyanchik
- William Peter
- Xianhui Zhao
- Yukinori Yamamoto

The growing demand for electric vehicles (EVs) has necessitated significant advancements in EV charging technologies to ensure efficient and reliable operation.

The growing demand for renewable energy sources has propelled the development of advanced power conversion systems, particularly in applications involving fuel cells.

System and method for part porosity monitoring of additively manufactured components using machining
In additive manufacturing, choice of process parameters for a given material and geometry can result in porosities in the build volume, which can result in scrap.

Distortion generated during additive manufacturing of metallic components affect the build as well as the baseplate geometries. These distortions are significant enough to disqualify components for functional purposes.

For additive manufacturing of large-scale parts, significant distortion can result from residual stresses during deposition and cooling. This can result in part scraps if the final part geometry is not contained in the additively manufactured preform.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

In additive manufacturing large stresses are induced in the build plate and part interface. A result of these stresses are deformations in the build plate and final component.

This invention presents a multiport converter (MPC) based power supply to charge the 12 V and 24 V auxiliary batteries in heavy duty (HD) fuel cell (FC) electric vehicle (EV) power train.