Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (29)
- Computing and Computational Sciences Directorate (39)
- Energy Science and Technology Directorate
(229)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (138)
- User Facilities (28)
Researcher
- Costas Tsouris
- Andrew Sutton
- Michelle Kidder
- Radu Custelcean
- Gyoung Gug Jang
- Alexander I Wiechert
- Ali Riza Ekti
- Gs Jung
- Michael Cordon
- Raymond Borges Hink
- Aaron Werth
- Aaron Wilson
- Ajibola Lawal
- Benjamin Manard
- Burak Ozpineci
- Canhai Lai
- Charles F Weber
- Dhruba Deka
- Elizabeth Piersall
- Emilio Piesciorovsky
- Emrullah Aydin
- Gary Hahn
- Isaac Sikkema
- Isabelle Snyder
- James Parks II
- Jeffrey Einkauf
- Joanna Mcfarlane
- Jonathan Willocks
- Jong K Keum
- Joseph Olatt
- Kunal Mondal
- Mahim Mathur
- Matt Vick
- Melanie Moses-DeBusk Debusk
- Mina Yoon
- Mingyan Li
- Mostak Mohammad
- Nils Stenvig
- Omer Onar
- Oscar Martinez
- Ozgur Alaca
- Peter L Fuhr
- Sam Hollifield
- Sreshtha Sinha Majumdar
- Vandana Rallabandi
- Yarom Polsky
- Yeonshil Park

Lean-burn natural gas (NG) engines are a preferred choice for the hard-to-electrify sectors for higher efficiency and lower NOx emissions, but methane slip can be a challenge.

The diol compound derived from fermentation broth 2,3-butanediol (BDO) can be used as a feedstock for sustainable liquid fuel generation.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.

Real-time tracking and monitoring of radioactive/nuclear materials during transportation is a critical need to ensure safety and security. Current technologies rely on simple tagging, using sensors attached to transport containers, but they have limitations.

A novel molecular sorbent system for low energy CO2 regeneration is developed by employing CO2-responsive molecules and salt in aqueous media where a precipitating CO2--salt fractal network is formed, resulting in solid-phase formation and sedimentation.

Innovative microporous polymer captures CO2 and converts it to valuable chemicals at low temperature and pressure.