Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Peeyush Nandwana
- Brian Post
- Rangasayee Kannan
- Sudarsanam Babu
- Yong Chae Lim
- Amit Shyam
- Blane Fillingim
- Lauren Heinrich
- Ryan Dehoff
- Thomas Feldhausen
- Yousub Lee
- Zhili Feng
- Adam Stevens
- Alex Plotkowski
- Andres Marquez Rossy
- Bruce A Pint
- Bryan Lim
- Christopher Fancher
- Femi Omitaomu
- Gordon Robertson
- Haowen Xu
- Jay Reynolds
- Jeff Brookins
- Jian Chen
- Jiheon Jun
- Peter Wang
- Priyanshi Agrawal
- Roger G Miller
- Sarah Graham
- Steven J Zinkle
- Tim Graening Seibert
- Tomas Grejtak
- Weicheng Zhong
- Wei Tang
- Wei Zhang
- William Peter
- Xiang Chen
- Yanli Wang
- Ying Yang
- Yiyu Wang
- Yukinori Yamamoto
- Yutai Kato

A finite element approach integrated with a novel constitute model to predict phase change, residual stresses and part deformation.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

We will develop an AI-powered autonomous software development pipeline to help urban scientists develop advanced research software (e.g., digital twins and cyberinfrastructure) to support smart city research and management without the need to write codes or know software engin

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

The first wall and blanket of a fusion energy reactor must maintain structural integrity and performance over long operational periods under neutron irradiation and minimize long-lived radioactive waste.

The technologies provide a coating method to produce corrosion resistant and electrically conductive coating layer on metallic bipolar plates for hydrogen fuel cell and hydrogen electrolyzer applications.

Welding high temperature and/or high strength materials for aerospace or automobile manufacturing is challenging.