Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Srikanth Yoginath
- Venkatakrishnan Singanallur Vaidyanathan
- Amir K Ziabari
- James J Nutaro
- Philip Bingham
- Pratishtha Shukla
- Ryan Dehoff
- Sudip Seal
- Vincent Paquit
- Alexandre Sorokine
- Ali Passian
- Bryan Lim
- Clinton Stipek
- Daniel Adams
- Diana E Hun
- Gina Accawi
- Gurneesh Jatana
- Harper Jordan
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- Mark M Root
- Michael Kirka
- Nance Ericson
- Obaid Rahman
- Pablo Moriano Salazar
- Peeyush Nandwana
- Philip Boudreaux
- Philipe Ambrozio Dias
- Rangasayee Kannan
- Taylor Hauser
- Tomas Grejtak
- Varisara Tansakul
- Viswadeep Lebakula
- Yiyu Wang

ORNL researchers have developed a deep learning-based approach to rapidly perform high-quality reconstructions from sparse X-ray computed tomography measurements.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

We have been working to adapt background oriented schlieren (BOS) imaging to directly visualize building leakage, which is fast and easy.

A new nanostructured bainitic steel with accelerated kinetics for bainite formation at 200 C was designed using a coupled CALPHAD, machine learning, and data mining approach.

Digital twins (DTs) have emerged as essential tools for monitoring, predicting, and optimizing physical systems by using real-time data.

Simulation cloning is a technique in which dynamically cloned simulations’ state spaces differ from their parent simulation due to intervening events.

Simurgh revolutionizes industrial CT imaging with AI, enhancing speed and accuracy in nondestructive testing for complex parts, reducing costs.