Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate
(223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Alexandre Sorokine
- Alex Roschli
- Clinton Stipek
- Daniel Adams
- Diana E Hun
- Easwaran Krishnan
- Erin Webb
- Evin Carter
- James Manley
- Jamieson Brechtl
- Jeremy Malmstead
- Jessica Moehl
- Joe Rendall
- Karen Cortes Guzman
- Kashif Nawaz
- Kitty K Mccracken
- Kuma Sumathipala
- Mengdawn Cheng
- Mengjia Tang
- Muneeshwaran Murugan
- Oluwafemi Oyedeji
- Paula Cable-Dunlap
- Philipe Ambrozio Dias
- Soydan Ozcan
- Taylor Hauser
- Tomonori Saito
- Tyler Smith
- Viswadeep Lebakula
- Xianhui Zhao
- Zoriana Demchuk

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

Estimates based on the U.S. Department of Energy (DOE) test procedure for water heaters indicate that the equivalent of 350 billion kWh worth of hot water is discarded annually through drains, and a large portion of this energy is, in fact, recoverable.

The use of biomass fiber reinforcement for polymer composite applications, like those in buildings or automotive, has expanded rapidly due to the low cost, high stiffness, and inherent renewability of these materials. Biomass are commonly disposed of as waste.

The incorporation of low embodied carbon building materials in the enclosure is increasing the fuel load for fire, increasing the demand for fire/flame retardants.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.