Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate
(26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities
(27)
Researcher
- Kyle Kelley
- Rama K Vasudevan
- Chad Steed
- Junghoon Chae
- Sergei V Kalinin
- Travis Humble
- Anton Ievlev
- Bogdan Dryzhakov
- Brian Sanders
- Gerald Tuskan
- Ilenne Del Valle Kessra
- Isaiah Dishner
- Jeff Foster
- Jerry Parks
- John F Cahill
- Josh Michener
- Kevin M Roccapriore
- Liam Collins
- Liangyu Qian
- Marti Checa Nualart
- Maxim A Ziatdinov
- Neus Domingo Marimon
- Olga S Ovchinnikova
- Paul Abraham
- Samudra Dasgupta
- Stephen Jesse
- Steven Randolph
- Vilmos Kertesz
- Xiaohan Yang
- Yang Liu
- Yongtao Liu

Enzymes for synthesis of sequenced oligoamide triads and tetrads that can be polymerized into sequenced copolyamides.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

The invention introduces a novel, customizable method to create, manipulate, and erase polar topological structures in ferroelectric materials using atomic force microscopy.

High coercive fields prevalent in wurtzite ferroelectrics present a significant challenge, as they hinder efficient polarization switching, which is essential for microelectronic applications.

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Detection of gene expression in plants is critical for understanding the molecular basis of plant physiology and plant responses to drought, stress, climate change, microbes, insects and other factors.

Direct-acting antivirals are needed to combat coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

This invention presents technologies for characterizing physical properties of a sample's surface by combining image processing with machine learning techniques.

There is a critical need for new antiviral drugs for treating infections of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2).

The invention provides on-line analysis of droplets for mass spectrometry.