Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate
(20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate (135)
- User Facilities (27)
Researcher
- Chad Steed
- Junghoon Chae
- Travis Humble
- Aaron Werth
- Alexandre Sorokine
- Ali Passian
- Clinton Stipek
- Daniel Adams
- Emilio Piesciorovsky
- Gary Hahn
- Harper Jordan
- Jason Jarnagin
- Jessica Moehl
- Joel Asiamah
- Joel Dawson
- Mark Provo II
- Nance Ericson
- Philipe Ambrozio Dias
- Raymond Borges Hink
- Rob Root
- Samudra Dasgupta
- Srikanth Yoginath
- Taylor Hauser
- Varisara Tansakul
- Viswadeep Lebakula
- Yarom Polsky

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

The ever-changing cellular communication landscape makes it difficult to identify, map, and localize commercial and private cellular base stations (PCBS).

The QVis Quantum Device Circuit Optimization Module gives users the ability to map a circuit to a specific quantum devices based on the device specifications.

QVis is a visual analytics tool that helps uncover temporal and multivariate variations in noise properties of quantum devices.

Electrical utility substations are wired with intelligent electronic devices (IEDs), such as protective relays, power meters, and communication switches.