Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (23)
- Computing and Computational Sciences Directorate (35)
- Energy Science and Technology Directorate (217)
- Fusion and Fission Energy and Science Directorate (21)
- Information Technology Services Directorate (2)
- National Security Sciences Directorate (17)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(128)
- User Facilities (27)
- (-) Isotope Science and Enrichment Directorate (6)
Researcher
- Amit Shyam
- Alex Plotkowski
- James A Haynes
- Mike Zach
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alexander I Wiechert
- Alice Perrin
- Andres Marquez Rossy
- Andrew F May
- Ben Garrison
- Benjamin Manard
- Brad Johnson
- Brian Post
- Bruce Moyer
- Charles F Weber
- Charlie Cook
- Christopher Fancher
- Christopher Hershey
- Costas Tsouris
- Craig Blue
- Daniel Rasmussen
- Dean T Pierce
- Debjani Pal
- Derek Dwyer
- Gerry Knapp
- Gordon Robertson
- Hsin Wang
- James Klett
- Jay Reynolds
- Jeff Brookins
- Jeffrey Einkauf
- Jennifer M Pyles
- Joanna Mcfarlane
- John Lindahl
- Jonathan Willocks
- Jovid Rakhmonov
- Justin Griswold
- Kuntal De
- Laetitia H Delmau
- Louise G Evans
- Luke Sadergaski
- Matt Vick
- Mengdawn Cheng
- Nedim Cinbiz
- Nicholas Richter
- Padhraic L Mulligan
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peter Wang
- Rangasayee Kannan
- Richard L. Reed
- Roger G Miller
- Sandra Davern
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Tony Beard
- Vandana Rallabandi
- William Peter
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Ruthenium is recovered from used nuclear fuel in an oxidizing environment by depositing the volatile RuO4 species onto a polymeric substrate.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

The technologies provide a system and method of needling of veiled AS4 fabric tape.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.

Spherical powders applied to nuclear targetry for isotope production will allow for enhanced heat transfer properties, tailored thermal conductivity and minimize time required for target fabrication and post processing.