Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit Shyam
- Alex Plotkowski
- Alexander I Wiechert
- Costas Tsouris
- James A Haynes
- Ryan Dehoff
- Sumit Bahl
- Adam Stevens
- Alexander Enders
- Alice Perrin
- Andres Marquez Rossy
- Benjamin Manard
- Brian Post
- Charles F Weber
- Christopher Fancher
- Christopher S Blessinger
- Dean T Pierce
- Debangshu Mukherjee
- Derek Dwyer
- Gerry Knapp
- Gordon Robertson
- Gs Jung
- Gyoung Gug Jang
- Jay Reynolds
- Jeff Brookins
- Joanna Mcfarlane
- Jonathan Willocks
- Jovid Rakhmonov
- Junghyun Bae
- Louise G Evans
- Matt Vick
- Md Inzamam Ul Haque
- Mengdawn Cheng
- Nicholas Richter
- Olga S Ovchinnikova
- Paula Cable-Dunlap
- Peeyush Nandwana
- Peter Wang
- Radu Custelcean
- Rangasayee Kannan
- Richard L. Reed
- Roger G Miller
- Sarah Graham
- Sudarsanam Babu
- Sunyong Kwon
- Vandana Rallabandi
- William Peter
- Ying Yang
- Yukinori Yamamoto

High-gradient magnetic filtration (HGMF) is a non-destructive separation technique that captures magnetic constituents from a matrix containing other non-magnetic species. One characteristic that actinide metals share across much of the group is that they are magnetic.

Currently available cast Al alloys are not suitable for various high-performance conductor applications, such as rotor, inverter, windings, busbar, heat exchangers/sinks, etc.

The invented alloys are a new family of Al-Mg alloys. This new family of Al-based alloys demonstrate an excellent ductility (10 ± 2 % elongation) despite the high content of impurities commonly observed in recycled aluminum.

The lattice collimator places a grid of shielding material in front of a radiation detector to reduce the effect of background from surrounding materials and to enhance the RPM sensitivity to point sources rather than distributed sources that are commonly associated with Natur

Among the methods for point source carbon capture, the absorption of CO2 using aqueous amines (namely MEA) from the post-combustion gas stream is currently considered the most promising.

The lack of real-time insights into how materials evolve during laser powder bed fusion has limited the adoption by inhibiting part qualification. The developed approach provides key data needed to fabricate born qualified parts.

Pyrolysis evolved gas analysis – mass spectrometry (EGA-MS) and pyrolysis gas chromatography – MS (GC-MS) – are powerful analytical tools for polymer characterization.

We have developed an aerosol sampling technique to enable collection of trace materials such as actinides in the atmosphere.