Filter Results
Related Organization
- Biological and Environmental Systems Science Directorate (26)
- Computing and Computational Sciences Directorate (38)
- Energy Science and Technology Directorate (223)
- Fusion and Fission Energy and Science Directorate (24)
- Information Technology Services Directorate (3)
- Isotope Science and Enrichment Directorate (7)
- National Security Sciences Directorate (20)
- Neutron Sciences Directorate (11)
- Physical Sciences Directorate
(135)
- User Facilities (27)
Researcher
- Amit K Naskar
- Blane Fillingim
- Brian Post
- Jaswinder Sharma
- Lauren Heinrich
- Logan Kearney
- Michael Toomey
- Nihal Kanbargi
- Peeyush Nandwana
- Sudarsanam Babu
- Thomas Feldhausen
- Viswadeep Lebakula
- Yousub Lee
- Aaron Myers
- Alexandre Sorokine
- Annetta Burger
- Arit Das
- Benjamin L Doughty
- Carter Christopher
- Chance C Brown
- Christopher Bowland
- Clinton Stipek
- Daniel Adams
- Debraj De
- Edgar Lara-Curzio
- Eve Tsybina
- Felix L Paulauskas
- Frederic Vautard
- Gautam Malviya Thakur
- Holly Humphrey
- James Gaboardi
- Jesse McGaha
- Jessica Moehl
- Justin Cazares
- Kevin Sparks
- Liz McBride
- Matt Larson
- Philipe Ambrozio Dias
- Ramanan Sankaran
- Robert E Norris Jr
- Santanu Roy
- Sumit Gupta
- Taylor Hauser
- Todd Thomas
- Uvinduni Premadasa
- Vera Bocharova
- Vimal Ramanuj
- Wenjun Ge
- Xiuling Nie

Efficient thermal management in polymers is essential for developing lightweight, high-strength materials with multifunctional capabilities.

Often there are major challenges in developing diverse and complex human mobility metrics systematically and quickly.

The disclosure is directed to optimized fiber geometries for use in carbon fiber reinforced polymers with increased compressive strength per unit cost. The disclosed fiber geometries reduce the material processing costs as well as increase the compressive strength.

Understanding building height is imperative to the overall study of energy efficiency, population distribution, urban morphologies, emergency response, among others. Currently, existing approaches for modelling building height at scale are hindered by two pervasive issues.

A novel and cost-effective process for the activation of carbon fibers was established.
Contact
To learn more about this technology, email partnerships@ornl.gov or call 865-574-1051.

Water heaters and heating, ventilation, and air conditioning (HVAC) systems collectively consume about 58% of home energy use.

ORNL contributes to developing the concept of passive CO2 DAC by designing and testing a hybrid sorption system. This design aims to leverage the advantages of CO2 solubility and selectivity offered by materials with selective sorption of adsorbents.

This work seeks to alter the interface condition through thermal history modification, deposition energy density, and interface surface preparation to prevent interface cracking.

Additive manufacturing (AM) enables the incremental buildup of monolithic components with a variety of materials, and material deposition locations.

Ceramic matrix composites are used in several industries, such as aerospace, for lightweight, high quality and high strength materials. But producing them is time consuming and often low quality.